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Abstract-A variational method is presented for studying the problems of combined free and forced 
convection in vertical channels. The method is applied to flow in a vertical rectangular channel and 
the results are compared with the available exact solutions. The method is further extended for 

circular ducts. 

NOMENCLATURE 

area of cross-section; 
specific heat of the fluid at constant 
pressure ; 
acceleration due to gravity; 
average peripheral heat-transfer co- 
efficient ; 
fluid thermal conductivity; 
Nusselt number; 
heat-generation rate ; 
radius of the circular duct; 
dimensionless radius of the circular 
duct; 
Rayleigh number ; 
temperature of the fluid; 
wall temperature ; 
wall temperature at ,I = 0; 
dimensionless mean mixed temperature; 
component of fluid velocity in the z- 
direction; 
mean fluid velocity; 
constant density of the fluid; 
density of the fluid at the wall; 
viscosity ; 
coefficient of thermal expansion; 
mean mixed temperature. 

INTRODUCTION 

THE effect of free convection on the forced heat 
transfer for fully developed laminar flow in 

* NOW, Research Associate, Graduate School of Aero- 
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York. 

vertical channels, has recently been realized as 
significant in many engineering problems of 
nuclear reactors, electrically heated vertical 
tubes and heat exchangers. These applications 
approximate a linearly varying wall temperature 
or uniform wall heat flux, rather than a uniform 
wall temperature. A number of theoretical 
investigations, by Ostrach [l], Hallman [2] and 
Han [3], are available in this direction. In all 
these cases, the solution of a fourth-order 
differential equation obtained by combining the 
momentum and energy equations, has been 
sought, which is, of course, very complicated. 
The recent work of Tao [4] suggests a method of 
solving such problems by introducing a complex 
function whose real and imaginary parts are 
related directly to the velocity and temperature 
fields, respectively. This combines the momen- 
tum and energy equations to give an inhomo- 
geneous Helmholtz equation with homogeneous 
boundary conditions. Although the solution 
of this equation is less complicated, the com- 
putational work still seems to be lengthy. 

In the present work, a variational principle has 
been developed for studying problems of this 
type. The inhomogeneous Helmholtz equation 
obtained by Tao [4] is replaced by an appro- 
priate variational principle. In particular, the 
problem of flow in a vertical, rectangular 
channel is solved and the results are compared 
with those obtained by Han [3]. The principle is 
further extended for circular ducts. It is found 
that the variational approach greatly reduces the 
complexities of the solution of the problem. 
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THE MOMENTUM AND ENERGY EQUAnONS 

Consider a steady laminar flow of a liquid in a 
vertical channel under the joint influence of 
pressure-gradient and buoyancy forces. It is 
assumed that the flow velocity M’(x, JJ) is entirely 
parallel with the channel axis and is independent 
of distance z along the channel. As a conse- 
quence, the continuity equation, awjaz = 0, is 
satisfied identically. The fluid properties, except 
for the density, are taken as constant in con- 
sidering the buoyant effect. Viscous dissipation 
is neglected and the heat input from the boun- 
dary to the fluid is constant in the flow direction, 
i.e. the wall temperature is linear: 

at,,. 
t,,. =I- t, + cz, -- = c. 

a 

The reason one can usefully seek an asymp- 
totic solution of the problem, in which, 
o = (0, 0, w(x, JJ)> and the distribution of buoy- 
ancy force is independent of z, is precisely 
because the wall temperature is taken as linear. 
Also, the rate of internal heat generation per 
unit volume, Q, is assumed to be uniform 
everywhere in the fluid. The flow is in the 
vertical upward direction, along the positive 
z-axis. Under these conditions, the equations of 
motion and temperature distribution are ([3], 
I4J) 

-g + ;$ = pocYCw/k - Q/k (2) 

where 0 is defined as a temperature-difference 
function 

e = (t - t&J. (3) 

The boundary conditions are 

at the wall. 

With the following dimensionless quantities B,, = JA Bw dx dy/J, w ds d.1,. (12) 

X = x/D, 

Y = y/D, 

T = k8/p0c,,Cw,, D2 

w = w/w,,, 

7 

i 
) (5) 

E == - (; + g,,,.) D2//.m,,r / 

F = Q/ p,,~O~,n J 
where D is the equivalent or the hydraulic 
diameter, w, is the mean fluid velocity and E is 
proportional to the net pressure-gradient force 
along the channel, the equations (1) and (2) are 
reduced to 

a2w PW 
2x2 + $j72 iRaT=-E (6) 

Ra (Rayleigh number) = p;gc,@D*/kp. 

The complex functions 

@ = W + ie2T, G = F - ic-2E (8) 

are introduced, where 8 == Ra, and equations 
(5) and (6) are combined into 

a?3 a%D 
ax2 f arz - ic2@ = - ic2G. (9) 

The boundary conditions (4) become 

0 = 0, on the boundary. (10) 

Equation (9) is an inhomogeneous Helmholtz 
wave equation, with homogeneous boundary 
condition (10). 

For axially symmetric flow in a vertical circular 
pipe, equation (9) becomes 

a26j 1 a@ 
$jj + jj 33 - ir2@ == - ie2G, R = u/D (11) 

with @ = 0 on the boundary and R denoting the 
dimensionless radius of the pipe. 

MEAN MIXED TEMPERATURE AND 

NUSSELT NUMBER 

The mean mixed temperature may be defined 
as 
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In the dimensionless form it is 

T,,, = JA TWdXdY& WdXdY 

= & Z,, CS, @’ dXd Y:. (13) 

The Nusselt number is defined in the usual 
manner as 

Nu = I;D/k (14) 

where I; is the average peripheral heat-transfer 
coefficient 

It is easy to verify that the choice off is a proper 
one. The variational integral corresponding to 
the differential equation (9) is 

- mP + 2mG@ 1 dXdY. (20) 
For a rectangular duct of sides 2a, 2b, expression 
(20) becomes 

The Nusselt number in the dimensionless form 
thus becomes 

(16) 

where the hydraulic radius rh is defined as the 
cross-sectional area divided by the circum- 
ference. 

THE VARIATIONAL PROCEDURE 

It is now necessary to formulate a variational 
principle which should be equivalent to equations 
(9) and (10). To this end, consider a variational 
integral 

Z = Jf,.f(X, Y, @, @x, @y) dX d Y (17) 

where @(X, Y) is the unknown function. The 
necessary condition that the integral (17) be 
stationary is that its first variation vanishes, 
6Z= 0. This requires that the integrand should 
satisfy the Euler equation 

The function f is chosen in such a way that its 
insertion in (18) gives the required differential 
equation in 0. 

The Ritz method is then applied to determine 
@. 

In order to derive (9) from (18), take 

f’= [($I’ + (gj2- mQ2 + 2mG@], 

m = - ic2. (19) 

- mD2 + 2mG@ 1 dX dY (21) 
the equivalent diameter D being taken as 2a and 
CC = (b/2a). The variational integral correspond- 
ing to equation (18) for the circular pipe of 
radius r, is 

J 
l/2 'a@ 2 

I= 

0 K 1 aR, 
- mQ2 -I 2mG@ 

I 

R dR. (22) 

The correspondence between the variational 
integrals and the differential equations is subject 
to certain boundary conditions being satisfied. 
In the present problem, the physical requirement 
that @ = 0 on the boundary assures this 
correspondence. 

APPLICATION TO THE RECTANGULAR DUCT 

According to the Ritz method, when a 
function @(X, Y) is to be determined, the pro- 
cedure consists in assuming that the desired 
extremal of the integral (21) can be approximated 
by a linear combination of IZ suitably chosen 
functions. 

As a first approximation, we select a simple 
polynomial 

@ = (X2 - a,( Y2 - a2)[Co + C,(X2 + Y2)] (23) 

Co and C, being the constants to be determined. 
The factors (X2 - 2) and ( Y2 - CL”) in each of 
the two terms of (23) satisfy the condition of @ 
being zero at the boundaries X = -J-i, Y = fa. 
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Substituting equation (23) into the variational integral (21) and integrating gives 

4 4 
-!- 9 a3mGC, -+ 45 mGC, (24) 

To find the values of C,, and C, which will make I a minimum, we differentiate the above expression 
with respect to C, and C,, respectively, and set the resulting equations to zero. This gives 

4 ‘- CL3 tie 
i 43 mG a” + _4, 

t ) 
. (26) 

For a square duct of side 2a, we have a = 4. The equations for Co and C, derived from (25) and 
(26) are 

COIO*l - 0*005m] + e~[O.~857143 - 0‘~357143m] -+ (0.125)mG = 0 (27) 

C,[O*1714285 - 0~007142857m]+ C,[O.O5238095 - 0WO85034m]+O~25mG = 0. (28) 

Solution of this group of linear algebraic equations provides the following values of C, and C,. 

Co = G 
OW44047616m + 0~000017Ra 

OW37687075 + O$KI0224489m + 0~0000017007Ra I (29) - 

Cl = G 
0*00357143m + 0+00357143Ra 

0.0037687075 + OWO224489m + OXKlOOO~7~a I ’ (30) -- 

Making the denominators of the constants C, and C, real gives 

0+0289119Ra2 
C,=G - 

i 

+ 924*756Ra + 3d7485Ra m - 16600m 

0.00289238Ra2 + 37~58282Ra + 14203.156 
(31) 

c = G 0.638Ra2 - 571*646Ra-77.8357Ram- 14138m 
1 0dI0289238Ra2 + 37.58282Ra +14203*156 1 (32) 
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With these values of constants, the expression for @ is completely known, and may be split into real 
and imaginary parts. The real part of @ gives the velocity distribution and the imaginary part, 
divided by Rar12, denotes the distribution of temperature. If F = 0, i.e. when there is no heat 
source present, we have from (8) 

C = - ic-2E = - iE/R@. (33) 
This gives 

0 = @X2 - ))( Y2 - *) 

L 

- Ra3/2{0*0289119 + (X2 + Y 3(0*638)} - Ra1/2{924*756 - (X2 + Y2)(571*646)} 
0.00289238Ra2 + 37.58282Ra + 14203.156 I 

TE(X2_ ;i)(Y”- a,[ 
- Ra(3.67485 - (X2 + Y3(77*8357)) + (16600 + (X2 + Y2)(14138)} . 

0W289238Ra2-+ 37.58282Ra + 14203.156 1 
(34) 

For Ra = rr4 and E = 35.13 [3], the equation (34) yields 

@ = (X2 - ))(Y2- &)[{(X 2 f Y2)(42*656333) + 31.879993) + i{(X2 + Y2)(9.876153)- 17*9835}], 
(35) 

From (13) the dimensionless mean mixed temperature is 

Using (35), we get 
T, = (1/2Ra1/2)Zm{J"i2,,2 j?j,2 cD2 dXd Y}. (36) 

1.33786169 
T, = - 2Ral12 = - 0.067724. (37) 

The Nusselt number derived from (16) is 

1 
Nu = 4T, = 3.6914. 

Similarly, for Ra = Ion", E = 90.73 ([3]), and the expression for @ is 

@ = (X” - b_)( Y2 - i)[{(Xz + Y2)(152.40888) + 22.021748) 
- i((X2 + Y2)(2*683716) + 50.36403)J. (39) 

The dimensionless mean mixed temperature is 
Table 1 

T, = - 0.05923. (4) ~-____-______ __ 

The Nusselt number is Nusselt number 

Nu = 4.2207. (41) Ra E Present Exact Error 
method method [3] (%J 

A comparison of the results with the available 
exact solutions is given in Table 1. The agreement ?rp 35.13 3.6914 3.69 +0@4 

is good. 1074 9073 4.2207 4.27 -1.0 

CONCLUSION 

The present method gives the solutions in The possibility of having a zero Rayleigh 
terms of simple polynomials. The heavy com- number arises if either /I = 0 or C = 0. From (2) 
putational work as required in series solution it is clear that, if C = 0, there is zero heating in 
is thus avoided without loss of accuracy in the the axial direction. The energy equation thus 
results. becomes independent of the velocity field, and 
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the flow reduces to normal Poiseuille pipe flow. 
When /3 = 0, the buoyant term in the momentum 
equation disappears and the problem reduces 
to that of forced convection alone. In both 
these cases, the variational principles can be 
formulated ab initio [5]. 
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Resume-On prtsente ici une methode “de variation” pour l’etude des problemes de convection 
mixte, libre et for&e, dans des conduites verticales. Cette methode est appliquee a un conduit rec- 
tangulaire vertical et les rtsuhats compares aux solutions exactes valables. La methode est ensuite 

&endue aux conduites circulaires. 

Zusammenfassung-Mit Hilfe einer Variationsmethode kann das Problem der kombinierten freien 
und erzwungenen Konvektion in senkrechten Rohren studiert werden. Die Methode ist auf die 
Stromung im senkrechten rechteckigen Kanal angewandt; die Ergebnisse werden mit verfiigbaren 

exakten Lijsungen verglichen. Die Methode ist such auf kreisfiirmige Rohre erweitert. 

~~aoTalIllJr_npeAJraraeTcrr sapnaugronHbIii xeTo;l pememm aanav cno6o~aoii N 
BbIHYHEAeHHOm KOHBeKIJI& Up&i XIX COBMeCTHOM AeliCTBIIEI B BepTHKaJIbHbIX HaHanax. 3TOT 

MeTOA IIpllMeHtiH I< TeYeHHIO B BepTHKanbHOM IIpRMOyrOJIbHOM IEaHaXe II peZJ7IbTaTbI CpaBHeHbI 

C YHFe IIMeIOII{HMIlCH T04HbIMH peIIIeHIWMII. B ~a,?bIIeinIeM yKa8aHHbIii MeTox o6o6niaeTcn 

IGI IipgrJIbIe ~~~61~1. 


